JOURNAL OF COMPUTATIONAL PIYSIcs 119, 164-187 (1995

Spectral Transform Solutions to the Shaliow Water Test Set

RUEDIGER JakoB-CHiEN,* JAMES J. HACK, T AND DAvVID L. WILLIAMSON

National Center for Atmospheric Researchi, Boulder, Colorade 80307

Received June 10, 1994; revised December 5, 1994

Solutions to the test case suite proposed by Williamson et al. (J.
Comput. Phys. 102, 211 (1992)), for the shallow water equations in
spherical geometry, are presented. The solutions have been gener-
ated using a conventional spectral transform technique combined
with a semi-implicit time differencing scheme. For several of the
test cases, closed-form solutions do not exist. For these cases, high-
resolution numerical integrations of the spectral transform model
are used to provide reference solutions against which alternative
numerical schemes and fower resolution spectral transform solu-
tions can be evaluated. The sensitivity of the high resolution nurneri-
cal solutions, associated with temporal truncation, spatial trunca-
tion, and internal dissipation, are quantified in order to help bound
their uncertainty. In almost all of the test cases, the spectral trans-
form method proves to be a highly accurate solution technique.
This is particularly the case at resclutions typically associated with
atmospheric general circulation models used to simulate the atmo-
sphere's climate. The most serious deficiency of the spectral trans-
form methed, in the context of the test cases, is the introduction
of spurious minima and maxima into the solution {caused by Gibbs
phenomenon), when sharp gradients exist. Although this behavior
is not necessarily a problem for accurately simulating fluid flow, it
can become a serious problem for atmospheric general circulation
models if the spurious wave structures result in nonphysical states
such as negative water vapor mixing ratio. © 1995 Academic Press, Inc.

1. INTRODUCTION

Since the shallow water equations exhibit many of the proper-
ties associated with the horizontal dynamical component of
three-dimensional atmospheric models, they provide a suitable
initial framewaork for evalumting, numerical approximations. A
standard test set for evalvating numerical approximations to
the shallow water cquations in spherical geometry has been
proposed by Williamson er af. [17]. The test suite is designed
ta evaluate numerical methods proposed for global atmospheric
general circulation models and (o identify the merits of any
trade-offs that might be faced in their implementation. This
paper presents a summary of solutions to the proposed test
cases obtained using the spectral transform method. We do not
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report on the formulation of the numerical test set, but instead
rely on [17] to provide a detailed mathematical description of
the test cases and the requested performance metrics.

The global atmospheric modeling community bas long undes-
stood that the adaptation and development of computational
methods for solving partial differential equations in spherical
geomeltry is complicated by the unique characteristics of the
coordinate system itself. For example, since longitude is multi-
valued at the pole, non-zero vector functions will have multival-
ued or discontinuous components, even though the same func-
tions have smooth properties in a Cartesian framework. As
another example, the use of a uniformly distributed latitude—
longitude finite-difference grid requires either an excessively
small time step (to satisfy the local linear stability criteria) or
some form of empirical filtering of longitudinal waves near
the poles because of the convergence of longitude lines. Such
difficulties, which are uniguely associated with the spherical
coordinate system, are collectively referred to as the ‘‘pole
problem.”” The spectral method presents a natural solution to
problems introduced by spherical geomeiry in part because it
provides an isotropic representation in wavenumber space even
though the commonly adopted underlying Gaussian grids do
not. The spectral transtorm method, which made spectral meth-
ods competitive with finite-difference approaches in terms of
storage and processor time, was first introduced by Orszag [10]
and Eliasen ef al. {3]. A fairly complete discussion of the history
and algorithmic properties of the spectral transform procedure
can be found in Bourke ef of. 12] and Machenhauer [11]. Al-
though not universally adopted, the method is now widely
aceepted as the basis for both operational numerical weather
prediction and global climate modeling.

The solutions summarized in this paper and presented in
detail in Jakob et al. (8] were generated using a semi-implicit
spectral transform based shallow water model, where the spe-
cific algorithms and numerical approximations are described
in Hack and Jakob [6]. An overview of the governing equations,
including generalizations to accommodate several of the test
cases, is provided in Section 2. Delails associated with the code
implementation affect the calculated error measures in those
test cases that are trivial for the spectral method. In particular,
the degree of orthogonality of the discrete polynomials and
Gaussian quadrature is several orders of magnitude above ma-
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chine rounding levels. This is quantified in Section 2 50 as to
explain the observed results in these cases, although it is basi-
cally irrelevant for practical applications. In some cases and, in
particular, Test Case 7 involving atmospheric initial conditions,
spurious gravity waves can contaminate the solutions. In such
cases, an initialization step is desirable to minimize the mass
and momentum imbalances in the initial condition. The initial-
ization procedure used for Test Case 7 is also described in
Section 2. Solutions to Test Cases 1-4, for which analytic
solutions exist, are discussed in Section 4. The remaining test
cases, zonal flow over an isolated mountain (Test Case 5),
Rossby—Haurwitz wave (Test Case 6), and analyzed 500 mb
height and wind field initial conditions (Test Case 7), do not
have closed-form solutions. In order to evaluate the perfor-
mance of alternative numerical methods for these test cases,
high resolution reference solutions have been compuied using
the spectral transform model. The sensitivity of these solutions
to arbitrary parameters such as the time step, diffusion coeffi-
cient, and the number of modes retained in the numerically
generated reference data sets are discussed in Section 3 to
indicate their uncertainty. The reference solutions themselves
and lower resolution approximations are discussed in Section 5.

Because of the sheer volume of performance metrics re-
quested with the test cases, we include only an abbreviated
discussion of the spectral transform solutions in this paper. A
more complete discussion of the spectral transform results,
including all of the performance metrics requested in [17] is
provided in the technical report by Jakob et al. [8]. Copies of
this technical report may be obtained from Hack or Williamson
at NCAR (jhack @ncar.ucar.edu; wmson@near,ucar.edu).

2. GOVERNING EQUATIONS AND SOLUTION METHOD

Governing Equations

In vector form, the horizontal momentum and mass continu-
ity equations governing the behavior of a rotating, homoge-
neous, incompressible, and hydrostatic fluid are written as

o kX V-V,

” 2.1)

and

d®

- ~DV -V, (2.2)

where V = iu + ju is the horizontal (with respect to the surface
of the sphere) vector velocity, ® = gh is the free surface
geopotential, & is the free surface height, g is the acceleration
of gravity, f = 2(} sin ¢ is the Coriolis parameter, ¢ denotes
latitude, and £} is the angular velocity of the earth. The substan-
tial derivative is given by
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and the V operator is defined in spherical coordinates as

i 2
acos A

( )+l

V( )= 250

(2.4)

where A denotes longitude and « is the radius of the earth.

The solutions to the test cases presenied here are obtained
from a spectral transform code described in Hack and Jakob
[6] which approximates these equations. Test Case 5, however,
uses an irregular lower boundary (i.e., surface topography)
requiring changes to the generic form of the shallow water
equations in [6] and above. Additionally, several of the “*non-
linear’’ test cases exhibit an unforced energy cascade from
low to high wavenumber. A dissipation process is generally
employed to deal with the accumulation of energy at the trunca-
tion limit, sometimes referred to as spectral blocking, by mim-
icking horizontal mixing that occurs on smaller, unresolved
scales of motion. Consequently, a diffusion operator of the type
typically applied in atmospheric general circulation models is
included in the governing equations for Test Cases 5, 6, and
7. This process is especially important for the lower resolution
model integrations where even the initial data can have signifi-
cant energy near the truncation limit. Thus, the prediction equa-
tions (2.1) and (2.2) must be generalized to provide for surface
topography and to include a parameterization of subgrid-scale
mixing in the form of a dissipation term.

Let ki, denote the height of the mountains, #* the depth of
the fluid, and i = A* + A, the height of the free surface.
In the momentum equation (2.1) the pressure gradient force
continues to be based on the gradient of the free surface

% = —fk XV = V(®, + &*) + FY",

(2.5)
where the surface geopotential &, = gh, and &* = gh*. The
mass continuity equation (2.2), however, applies only to the
depth of the fluid, taking the form

dd* |
S vV + PR
= V-V +Fp

(2.6)
In each of these equations an internal dissipation term has also
been included.

As in [6], the geopotential ©* js divided into a time-invarjant
spatial mean @ and a time-dependent deviation @' = ®* —
®. After applying the curl and div operators, the absolute
vorticity, divergence, and geopotential prediction equations
become

an 1 A

i 0 )
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where the absolute vorticity n = (k- VX VY + f= ¢ + f
the divergence § = (V - V), and pu = sin . Note that the
generalized equations include the surface topography term @,
only in the divergence tendency equation. The changes to the
numerical algorithm are thus relatively small. Only the defini-
tion of the intermediate variable E in (5.11) of [6] must be
changed to

U+ v

=t =y

(2.10)

The form of the dissipation terms is equivalent to the hori-
Zomtal diffusion used in the NCAR Community Climate Models
[16, 7] and is given by

. 4
Foil = —K,[Vén — o 7], (2.11)
. 4
FRl= K [V46 -~ s 8], (2.12)
FRf= —EVKD + @ + @,). .13

The linear correction term has been added to the diffusion
operators in the vorticity and divergence equations to prevent
the damping of solid body rotation. The geopotential diffusion
operator is applied to the free surface geopotential so as not (o
cause spurious damping associated with surface topography.
The linear diffusion operator is implicitly evaluated (i.e., after
the spectral coefficients for the new time leve! have been up-
dated by a dynamical time step) in spectral space since the
spectral form of the V* operator is a trivial algebraic rela-
tionship,

Solution Method

The original implementation of the spectral transform method
employed for the solutions in this report is detailed in [6]. The
modifications required for the inclusion of surface topography
and internal dissipation are detailed in [8]. The spectral trans-
form algorithm relies on both grid- and spectral-based represen-
tations of the predicted variables. For an arbitrary variable s,
grid values are related to spectral coefficients by
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TABLE 1

Spectral Transform Grid Resolution

Number of
Spectral grid points
truncation
M Meridional: J Longitudinal: 1
42 64 128
63 96 192
106 160 320
170 256 512
213 320 640
M Nim)
WA = 2 3 dEPI(we™, (2.14)
m=—M n=|m|
where P%{ p)e®* are the spherical harmonic functions used for

the expansion basis (where Pi{ i) are the associated Legendre
functions), M is the highest fourier wavenumber included in
the east—west representation, and N (m) is the highest degree
of the associated Legendre functions for longitudinal wavenum-
ber 7. In the grid representation, ¢ is given at discrete latitudes
A; and longitudes w;, with 1 =/ =/Jand 1 =j = J.

The coefficients of the spectral representation (2.14) are de-
termined by

I i )
o= J,, EJ’; YA, pye ™ dAPT ) dp. (2.15)
The inner integral represents a Fourier transform,

m —.1_ 2 —im,
d) = o [ g, e man, (2.16)

which is evaluaied using a fast Fourier transform (FFT) routine.
The outer integral is evaluated using Gaussian quadrature,

gy = . (e )P T )w;,

J=1

(2.17)

where w; denotes the Gaussian grid points in the meridional
direction and w; is the Gaussian weight at point ;.

All solutions presented in the following have been computed
using triangular spectral truncations, N(m) = M, which have
become the most comenly adopted spectral truncation due to
the isotropic nature of the underlying spectral representation.
Consequently, the spectral transform process cannot contribute
to asymmetries in otherwise symmetric solutions. Alternative
truncation strategies, such as rhomboidal truncation, are gener-
ally used for extremely low resolution models, and are not
considered here. Table I lists the spectral truncations employed
in the following numerical experiments and the corresponding



SPECTRAL TRANSFORM SOLUTIONS

TABLE 1N

Diffusion Coefficient K,
as a Function of Spectral

Truncations

Spectral K,

truncation {m*/s)
42 .30 > 10"*
63 1.00 x 10%
106 1.25 x 10"
170 200 x 10"
213 8.00 x 10"

number of meridional and longitudinal points for the transform
grid. The longitudinal distribution of the grid points is equiangu-
lar, while the meridional distribution is nearly equiangular. The
meridional grid points are located at the Gaussian latitudes 6;,
which are the J roots of the Legendre polynemial: P(sin 6;) =
0. The number of grid points in the longitudinal and meridionai
directions are determined so as to allow the unaliased represen-
tation of quadratic terms,

I=3M+1,
J= (BN + 1)/2,

(2.18)
(2.19)

where N js the highest wavenumber retained in the latitudinal
Legendre representation (N = max{{Nm)} = M in the case of
triangular truncation). Furthermore, the implementation in [6]
requires an even number of latitudes to make convenient use
of the hemispheric symmetry of the associated Legendre func-
tions, The number of longitudes are also constrained to have
only the prime factors 2, 3, and 5 to allow the use of the highly
efficient FFT library developed by Temperton [14].

Table I1 lists values of the diffusion coefficients K, that have
been used as a function of triangular wavenumber truncation
for the solutions illustrated in later sections (unless specifically
stated otherwise). The coefficients scale as [N(N + 1}]72 so
that the smallest scales (highest wavenumber) are damped at
approximately the same rate. The effect of diffusion on the
solutions is discussed in some detail in the next section.

Table I1I lists the time steps that have been used to produce
the solutions presented in later sections, unless specifically
stated otherwise in the text, The time step scales approximately
as |/N for reasons associated with linear stability.

The global integral (Eq. (81) in [17]), used in many of the
requested error measures,

1 2z fer2
1 =5 [ [ hh oycos6anar, (220

is approximated consistently with the Gaussian quadrature of
the spectral transform method (2.14), by the discrete double sum

167

A, 8w, (2.21)

J
J=1

1 i
() ==~
W=~ 2
where w; are the weights of the Gaussian quadrature.
The most commonly requested error measures are normalized

{1, I, and [, norms, Using the height field as an example, where
h; is the true solution, these metrics are defined as

0| (A, BY — hr(A, )]

— 22
bt I On 222

{ILGRCA, 8) = B (A, B)YI}E
T W E T 2:2)
[m(h) _ mMaXquag “’l(/\, 9) - hT(/‘-! 9)' (2-24)

MaXay 0 | hT(/\; 6) |

Additional details can be found in [17]. A discussion of the
effects of grid sampling and spectral truncation is included later
in this paper.

An optional Asselin time filter, which is part of the spectral
shallow water model implementation (as discussed in [6]), has
not been used for the solutions presented here, unless specifi-
cally stated otherwise. No significant even—odd temporal mode
splitting was observed in any of the solutions, even those that
made use of extended integration periods.

Initialization

As mentioned earlier, Test Case 7 consists of a set of numeri-
cal integrations that start from analyses of observed data. Be-
cause the observational data are either incomplete, imperfect,
or both, analysis procedures can alias the slow atmospheric
motions onto fast gravity-wave type motions. These aliased
waves often have relatively large (unrealistic) amplitudes in
model forecasts, but they can be eliminated by modifying the
initial data with specialized initialization procedures. The initial
data for Test Case 7 have been modified accordingly. The
unmodified initial data were obtained from European Center
for Medium Range Weather Forecasts (ECMWF) analyses, as
compiled by Trenberth and Olson [15]. These data are available

TABLE I

Model Time Step as a
Function of Truncation

Spectral Timestep
truncation ({seconds)
42 1200
63 900
106 600
170 450
213 360
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FIG. 2.1, Height time series without (noisy) and with (smooth) nonlinear
normal mode initialization at the grid point closest to (40°N, 105°W).

as grid point values on a T42 Gaussian grid. However, the
point values were interpolated from the ECMWF data archive
using cubic splines (i.e., they were not spectrally truncated at
T42) and thus contain waves up to T63. A 10-km mean height
for the 500-mb equivalent geopotential was assumed for these
test cases. The data were then initialized using a Machenhauer
nonlinear normal mode initialization (NNMI) with Hough func-
tions appropriate for a 10-km equivalent depth. Afier an imtial
linear step zeroing the gravity wave amplitudes, five iterations
of the NNMI were used. This procedure has been described by
Errico [4] and Errico and Eaton [5] for the NCAR Community
Climate Model. The actual initialization code for the shallow
water model was provided by Andy van Tuyle (personal com-
munication, 1992).

Figure 2.1 shows the height time series for a point near
Boulder, Colorado (40°N,105°W)} computed from the uninitial-
ized data and from the initialized data. A comparison shows
that the high frequency variations in the height field have been
filtered out without changing the lower frequency, synoptic-
scale features of the flow.

Implementation Aspects

For a few of the test cases, where the spectral transform
method is expected to be accurate to rounding levels, a large
component of the error in our solutions is assoctated with the
discrete computational non-normality and non-orthogonality of
the basis functions. Although this is of little consequence for
practical applications, we review the source of the discrepancies
that will be seen later. The codes that generated the associated
Legendre functions used in the tests produce functions with
orthogonality and normality errors that can be as large as
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1000 e, where ¢ is machine accuracy (1.4 X 107" in the case
of CRAY floating point format). The largest orthogonality and
normality errors are given in Table IV for the resolutions in-
cluded in this study. These errors are defined as the largest
Gaussian quadrature of any associated Legendre function with
any other of same order m, and the largest of one minus the
quadrature of any function with itself. The errors are not equally
distributed, but they are particularly large for spherical har-
monic modes with relatively large degree n and orders m = 0
and m = 1.

As would be expected, the orthonormality errors are reduced
using double precision arithmetic for the calculation of the
Gaussian latitudes, weights, and Legendre functions. At T42
the maximum orthogonality and normality errors are reduced
to 8.0 X 107" and 2.2 X 1075, respectively, when the latitudes
and weights are calculated in double precision, and to 3.5 X
107" and 6.8 X 107, respectively, when the polynomials are
also calculated in double precision. In both cases, the quadrature
remains a single precision operation so that the orthonormality
is still not to machine accuracy because of rounding error in
the quadrature itself.

Performance Measures

Finally, sequential and parallel performance resuits for the
shallow water code (see the Appendix) on the Cray Y-MP
vector multiprocessor can be found in Jakob (9], which also
includes a performance model for the spectral transform algo-
rithin and its implementation. Table V contains representative
execution times and execution rates for a semi-implicit time
step as a function of model resolution for Test Case 2. The
effects of the O(n*) growth in operation count associated with
the Legendre transform (a well-known problem with global
spectral models) can be seen in this table. The T213 operation
count is approximately 80 times larger than at T42, and overall
it is less than half as etficient in terms of the number of available
degrees of freedom.

3. SOURCES OF REFERENCE SOLUTION UNCERTAINTY

Test Cases 5—7 do not have analytic solutions. Therefore, it
is necessary to generate reference solutions using a very high

TABLE IV

Computational Errer in Spherical Harmonic
Basis, Expressed as the Maximum Difference
between the Computational and Analytic Scalar

Product

Resolntion QOrthogonality Normality
T42 9.0 x 1071 85 X 107"
T63 1.7 x 107" 1.6 x 107"
T106 8.5 x 107" 8.5 x 107"
T213 3.2 %1070 32 % 1070
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TABLE V

Representative CPU Time (Seconds) and Floating Point Execution
Rate (in Millions of Floating Point Operations per second or MFLOPS}
on a Singie CRAY Y-MP Processor per Semi-implicit Time Step as
a Function of Horizental Spectral Resolution

Spectral
trncation T42 T63 T106 T170 T213
Execulion time 0.019 0.053 0.184 (1598 1.140
Execution rate 162 169 198 214 215

Note. The execution time for a l-day integration can be obtained by
combining this data with the time step data in Table IIIL

resolution version of the spectral transform model. Since these
are also only approximate solutions, it is desirable to have some
estimate of their uncertainty. In this section, we present various
properties of the real data forecasts (Test Case 7) with the high
resolntion version of spectral shallow water model to illustrate
the uncertainties associated with using such integrations as
reference solutions. In particular, we examine the uncertainty
associated with the incorporation of dissipation in the governing
equations. Certainly, errors smaller than the difference in the
reference solutions with and without intemal dissipation indi-
cates that a test solution is within the uncertainty of the reference
solution, and any solution reascnably close to the reference
solution should also be considered as within the uncertainty.
The uncertainties determined by these tests represent a mini-
mum level of uncertainty. For complete reliance on these refer-
ence solutions, similar solutions must be obtained using other
numerical approximations applied at high resolution. Until such
solutions are produced, the reference solutions presented here
should be used cautiously. Ali numerical reference solutions
presented in this paper were determined using a T213 spectral
truncation, currently the highest wavenumber truncation em-
ployed in operational forecast models, Limited tests at T426
indicate additional convergence above T213 which marginally
affects the details of the results, where the differences are
considerably smaller than the uncertainty associated with tem-
poral truncation, diffusion, and truncation to T106 (as discussed
in the latter part this section).

Kinetic Energy Considerations for Internal Dissipation

As mentioned in [17], the addition of an explicit diffusion
term may be desirable for several of the test cases and may
lead to improvement in some of the error measures. We begin
this discussion by defining the specific kinetic energy per vol-
ume element as

KE =

V-V (3.1}

2=

As shown m [8], assuming triangular truncation (N (m) = M),
the global mean of the specific kinetic energy KE, for spherical
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wavenumber 1 = n = M can be writien in terms of divergence
and vorticity spectral coefficients as

aZ

T annt 1)

KE, [§2(§2)* + anEN*

(32)
2222, 6;"(5;")*].

Figure 3.1a shows the kinetic energy spectra from day 5 of
two T213 forecasts using the 21 December 1978 initial data of
Test Case 7 with (lower curve) and without (upper curve)
diffusion. The diffusion coefficient was chosen to give a reason-
ably straight tail to the energy spectra. For the coefficient cho-
sen, the tail is slightly steeper than the —3 slope line piotted for
reference, This plot shows that the diffusion has no discernable
effect on wavenumbers less than 40.

Figure 3.1b shows the energy spectra from T106 integrations
with and without diffusion using the 21 December 1978 initial
data of Test Case 7. For these experiments, there is no dis-
cernable difference for wavenumbers less than 15. Figures 3.1c
and d compare the energy spectra from the T106 and T213
forecasts without and with diffusion, respectively. In both cases,
although the low wavenumber behavior is very similar, there
are observable differences in wavenumbers as small as 8. For
these particular diffusion coefficients, the characteristics of the
T106 forecast spectrum are very similar to the T213 forecast
spectrum. There is less similarity with either the T63 and T42
spectra when compared to the T213 results. This comparison
is shown in Figures 3.1e and f for the T63 and T42, respectively.
The tail in both curves is slightly steeper than the corresponding
portion of the T213 energy spectrum, indicating that the magni-
tude of the dissipation could probably be reduced.

Dependence of the Error Measures on Parameters Defining
the Reference Solution

We have performed several numerical experiments to quan-
tify the uncertainty in the reference solutions due to the choice of
values for some of the arbitrary parameters. These experiments
indicate that the reference solution can be no better than the
differences indicated but they do not indicate that it is necessar-
ily as good as these differences. The differences are summarized
in Table VL All experiments were conducted using a T213
truncation and the 21 December [978 initial data set in Test
Case 7. The first experiment compares the solution truncated
to T106 with the complete T213 representation and illustrates
the component of the error norm attributable to the neglect of
waves 107 through 213. The second experiment compares the
forecasts with and without diffusion and illustrates the uncer-
tainty introduced by explicit internal dissipation. The third ex-
periment compares the standard 360-s time step with a 450-s
time step, providing some indication of the role of the time
truncation error.
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FIG. 3.1.

Kinetic energy spectra for day 5 of forecasts from 21 December 1978 initial data: (a) T213 resolution with (lower curve) and without {upper
curve) diffusion; (b) T106 with (lower curve) and without (upper curve) diffusion; (c) T213 and T106 without diffusion; (d) T213 and T106 with diffusion;
(e) T213 and T63 with diffusion; (f} T213 and T42 with diffusion. The straight line in all panels has a —3 slope.

Any errors calculated with respect to the high resolution
reference solution, that are smaller than errors included Table
VI, indicate only that the alternate numerical scheme produces

Wy . . 2.)(10—5 T T T
results within the uncertainty of the reference solution. L
The Effect of Diffusion en Error Measures T
Figure 3.2 compares the normalized I(h) errors for the T106 I/
solutions from the 21 December 1978 initial data of Test Case 7 = | s
. - - . . 7
with (solid) and without (dashed) diffusion. They are evaluated = L S
against the T213 reference solution with diffusion, retaining o X /’
all 213 waves in the grid representation. The differences in the N 107 o l
o s
E 0 e
— I
Q@ s
£ I ~ 1
TABLE V1 /,
Approximation Differences after 5 Days I o 1
Iy ) L) I e
0 1 — B 1
Difference due o 106 1.0 X107 20x 100 25 %10t 0 24 48 72 96 120
truncations hours
Difference due to diffusion 8O X i07% 15X 10t 25X 107
Difference due to time step 35X 1075 55 % 107 6.0 x 10 FIG. 3.2. I, height errors for T106 resolution from 21 December 1978

inttial data without (dashed) and with (solid) diffusion.
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FIG. 3.3. Nomalized total energy (a) without and {b) with diffusion for T213 resolution from 21 December 1978 initial data.

normalized l, l,, and I, norms {where the I, and [, curves are
not shown) grow to 1.8 X 107, 3.6 X 107, and 2.2 X 1077,
respectively, by day five of the forecast. The diffusion decreases
the errors slightly by damping the erroneous small scales. This
damping is evident in the kinetic energy spectra shown earlier.
Any alternative numerical scheme with error norms in this
range should probably be considered to be comparable to a
T106 spectral solution.

The Effect of Diffusion on Global Integrals

When diffusion is included n the shallow water equations,
mass, vorticity and divergence continue to be conserved by the
continucus equations, whereas energy and enstrophy are no
longer conserved quantities. In what follows, we present the
global integrals from 30 day integrations using a T213 trunca-
tion with and without diffusion. Normalized mass is conserved
to nine digits over the 30-day period. The giobal average vortic-
ity grows no larger than 5 X 107" s~ over the 30 days without
diffusion, becoming almost three times larger by the end of
the 30-day period when diffusion is included. Global average
divergence behaves similarly in the two cases (i.e., independent
of the diffusion term), growing to —4 X 107'% 5~ by the end
of the integration period. Figures 3.3a and b show the normal-
ized total energy without and with diffusion. Without diffusion
(a) the energy remains conserved to seven digits, whereas with
diffusion (b} it is conserved to only five digits and decreases
as would be expected. Normalized potential enstrophy remains
conserved to four digits without diffusion and slightly better
than one digit with diffusion, again decreasing as expected.

The Effect of Neglecting Waves 107 through 213 of the
Reference Solution

Table VI above indicates the uncertainty in the reference
sojution due to the neglect of waves 107 through 213. The

errors in the T106 solution are large enough that for practical
purposes they can be determined using the T213 solution trun-
cated to T106. The normalized /| error graphs (not shown) for
the two cases are indistinguishable from each other as are
those for the /, error. The largest difference occurs with the
normalized [.(h) error shown in Fig. 3.4 in which the solid
line is from the complete T213 solution and the dashed line is
from the T213 solution truncated to T106.

The Effect of Time Step on Error

The errors in the unforced T106 solutions are dominated by
spatial truncation error, not by temporal truncation error. Figure
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FIG. 3.4. . height difference of 5-day T106 integration (using 21 Decem-

ber 1978 initial data) compared to T213 reference solution truncated to
T106 (dashed).
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F1G. 3.5. ] height error for T106 integration of 21 December 1978 initial
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3.5 shows the normalized !,(k) error norm for the T106 solution
with the standard 600-s time step (solid) and with a 300-s step
(dashed). Of all the error norms, the {, metrics show the largest
ditference, while the two normalized I, norms are indistinguish-
able from each other, as are the two /. norms.

4. TEST CASES i-4

In this and the next section, we summarize the solution
errors using the spectrai transform method applied at resofutions
currently favored by climate modeling applications. Complete
details and additional explanation of these results are provided
in [8]. The reader is referred to [17] for complete descriptions
of the test cases themselves, their associated error measures,
and the values for all physical constants. Test Cases 1-4 each
have analytic solutions. Thus, they provide an exact reference
for validating numerical solution techniques, including the spec-
tral transform method. These test cases fail into two categories
in the context of the spectral transform method. Test Case 2
(global steady state nonlinear zonal geostrophic flow) and Test
Case 3 (steady state nonlinear zonal geostrophic flow with
compact support) are trivially handled by the spectral transform
technique, while Test Case 1 (advection of a cosine bell over
the pole) and Test Case 4 (forced nonlinear system with a
translating low) require considerably higher spectral truncation
for comparably accurate solutions. The trivial cases are consid-
ered first.

Test Case 2—Zonal Geostrophic Flow

The global zonal geostrophic flow case is a trivial problem
for the spectral transform method since the height and wind
fields can be represented exactly by the basis functions of
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degree r = 1. Errors in the numerical solution reflect the accu-
mulation of rounding errors associated with our particular spec-
tral transform implementation and computer system, rather than
truncation errors associated with the spectral method. Conse-
guently, there is no point in performing a study of solution
convergence as a function of horizonial resolution for this case.
Figure 4.1 shows the [, height errors, using a T42 spectral
resclution for each of the four rotation angles. The solid line
is for & = 0 and for ¢ = 0.05, while the dashed line is for
a = 7/2 — 0.05, and for @ = w/2 (where e is the angle between
the pole of the computational grid and the axis abont which
geostrophic flow takes place). As a general rule, the h error
norms for the & = 0.0 and 0.05 cases are very close to each
other and in many instances are indistinguishable (as in Fig.
4.1). The & = /2 and 7/2 — 0.05 error norms are also generally
close to each other, but with smaller amplitude than the other
pair of rotation angles. The wind errors exhibit similar charac-
teristics. In general, the error norms associated with this test
case are extremely small, and there is clearly no need for
alternative numerical schemes to do as well on this test case
o be considered viable for atmospheric modeling applications.

With ¢ = 0.0 and 0.05 the spatial distribution of the solution
error is concentrated near the representational poles and coinci-
dent, or nearly coincident, with the rotational poles (we define
the representational pele to be the pole associated with the
spectral representation or computational grid, and the rotational
pole to be associated with the rotating geometry of the physical
problem). When the representational pole is near the rotational
equator (& = 7/2 and 7/2 — 0.05) the errors are more evenly
distributed. An examination of the errors associated with the
spectral truncation of the initial condition shows that in all
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FIG. 4.1. I, height error for T42, zonal geostrophic flow case. Thick solid
for o = 0, thin solid for @ = 0.0, thin dashed for « = w#2 — 0.03, and thick
dashed for & = m/2.
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cases the errors are associated with the representational pole
and are primarily related to the discrete computational non-
normality and non-orthogonality of the polynomials (as dis-
cussed in Section 2.)

Test Case 3—Zonal Geostrophic Flow with
Compact Support

Test case 3, zonal geostrophic flow with compaci support,
is also a trivial problem for the spectral transform method at
resolutions commonly in use today. Over the S-day integration
period, the errors are primarily the result of truncation error as
opposed to the previous case where they were the result of a
lack of orthogonality to rounding levels of the basis functions
at T42. Initially, the errors are only one order of magnitude
larger for the height field and two orders of magnitude larger
for the wind field than the discrete orthonormality errors dis~
cussed in Section 2. Thus, they are insignificant with regard to
practical problems. As with Test Case 2, alternative numerical
schemes do not have to perform as well io be constdered viable
for practical applications. Figure 4.2 shows the [, height errors
for the T42 case using « = O (wide solid line) and & = 7/3
(dashed line} along with the T63 case for o« = #/3 (narrow
solid line). Compared to the global scale zonal flow case (Test
Case 2}, the T42, o = 0 height errors are targer initially; then
they grow as they do in Test Case 2. When o = 7/3, the height
errors are larger in the compact support case than in the global
case for the entire period, since the global case shows slow
growth for the 5-day period. The noise superimposed on the
T42 curves is believed to be attributable to the lack of initializa-
tion for this integration. Very small amplitude gravity waves
are present due to small errors in the evaluation of the integral
used to determine the balanced height field. These waves propa-
gate meridionally (as defined by the rotational pole, rather than
the representational pole) and are present to the same extent
in the both the @ = 0 and & = @/3 cases. The observed noise
resuits from discrete sampling of these waves as their maxima
and minima fall near and between the discrete transform grid
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points. The T63 case shows a growth behavior similar to the
rounding accumulation in the globai zonal case. This is consis-
tent with the larger orthonormality errors observed with higher
resalution and smailer truncation errors expected with higher
resolution. Additionally, the noise associated with the discrete
sampling of the erroneous gravity waves is significantly smaller
because the gravity wave amplitudes are smaller due to a more
accurately approximated balance integral (for the initial state)
on the T63 transform grid. The /y, {;, and /. wind errors (not
shown) for the T42 case are up to two orders of magnitude
larger than the errors in Test Case 2 and show little growth
during the 5-day integration period.

Unlike Test Case 2, the error distribution in Test Case 3 is
clearly associated with the rotational pole and thus represents
truncation error rather than the orthonormality error associated

CONTDUN TROM D25 T8 25 BY 2%

Initial height field (a) and height field error (b) after one rotation for Test Case 1, where &« = 7/2 — 0.03. Contour interval is 100 m for the
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with the representational pole. Further evidence for this conclu-
siont can be found in [8].

Test Case |—Advection over the Pole

The remaining two test cases with analytic solutions present
more of a challenge to the spectral transform method. Test
Case 1, the advection of a cosine bell over the pole, is designed
to test the advective component of a numerical scheme in
isolation; i.e., it does not deal with the complete shallow water
system. For this test case, a cosine bell is advected once around
the sphere, directly around the equator (a = 0), directly over
the poles, and at slight angles to these two extremes, to expose
any problems associated with asymmetries in a numerical
scheme. The initia] height field, which should be maintained
throughout the course of one rotation is shown in Fig. 4.3a.
For all rotation angles, a, the final height fields after one rotation
(228 h or 864 rime steps of 1200 s) are visibly indistinguishable
from each other. Even the error fields for the different rotation
angles (o = 0,0.05, 7/2 — 0.05, and 7/2) are extremely similar
to each other, where the w/2 — 0.05 error distribution shown
in Fig. 4.3b is representative. The error in Fig. 4.3b illustrates
one of the principal shoricomings of the spectral transform
method which is that it cannot maintain a flat field in the
presence of other structures. In this case, error structures with
alternating sign (arising from Gibhs phenomenon) are seen over
the entire domain where the solution should be uniformly zero.
This can be a serious deficiency for many geophysical applica-
tions, The /i, I, and L. error measures are shown in Figure 4.4
for the 7/2 — 0.05 rotation angle using a T42 truncation and
a 1200-s time step (once again, these curves are very similar
for all four rotation angles, only the details of the high frequency
noise component differ). These error estimates show a signifi-
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cant error associated with the initial representation of the cosine
bell, followed by a systematic monotonic increase as the cosine
bell is advected around the sphere.

In addition to the global error estimates, this test case requests
the time-dependent behavior of the normalized mean, variance,
minimurn, and maximum values in the height field. These
curves are quite different in character for each of the four
rotation angles and unfortunately are too numerous to present
here, We refer the interested reader te [8] for additional details.
In all cases the relative errors are very small, but they exhibit
uniquely different low frequency modulations of some very
high frequency behavior. By manipulating the analytic solution
in various ways it can be demonstrated that the high frequency
behavior seen in these figures is attributable to sampling the
solution on a discrete grid. For example, an expanding envelope
seen in the normalized maximum height error, shown in Fig.
4.5, is a consequence of sampling a solution with a very small
phase error introduced by time truncation (and can be repro-
duced by sampling the arnalytic solution with a slight phase
error). Thus, the running average represents the fundamental
amplitude error. In all the error estimates for the 7/2 — 0.05
and 7/2 rotation angle solutions, there is the clear signature of
a pole crossing. Once again, this is a consequence of sampling
on the discrete grid, arising from a larger meridional grid inter-
val at the polar cap.

Finally, in Fig. 4.6 we show the I; error estimates as a function
of horizontal truncation for the #/2 — 0.05 rotation angle to
illustrate the convergence properties of the solution. The time
steps used were 600, 900, 600, and 450 s for the T42, T63,
T106, and T170 truncations, respectively. These are the stan-
dard values listed in Section 2 with the exception of the T42
value. For purposes of this figure, the time step for the T42
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truncations with 600, 900, 600, and 450-s time steps, respectively.

solation was chosen to be the same as that used to generate
the T106 solution, illustrating the role of the time truncation
error. Error estimates with the standard T42 time step of 1200
seconds were shown earlier in Fig. 4.4. The curves in Fig.
4.6 show large differences in all measures at the initial state
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(associated with spectral truncation), with significantly smaller
amplitudes at the higher resolutions. The growth of the error
norms (i.e., the slope of these measures with respect to time)
appears to be dominated by time truncation error. This can be
clearly seen by comparing the T106 and T42 results with each
other, since both were integrated using the sme time step.
Additionally, comparison with the T42 case illustrated in Fig.
4.4 (using a 1200-s time step) shows faster growth with the
longer time step. Thus, the selected time step is an important
component in the error estimates reported for this test case.

Test Case 4—Forced Nonlinear Translating Low

The final test case in this analytical category, Test Case 4,
the forced nonlinear system with a translating low, also presents
a challenge to the spectrai scheme in terms of representing the
initial state and the analytic forcing, The horizontal scales of
both the initial state and the forcing are considerably more
complex than in the earlier test cases and are less accurately
represented with comparable spectral truncations. This trunca-
tion error can be seen in all the error measures at r = 0 (e.g.,
see [8]), where modest improvements in horizontal resolution
can yield significantly better results. A curious behavior is seen
for the representation of the initial state using a T106 truncation,
where all error estimates are worse than at T63. This is a
consequence of the degree to which the basis functions are
orthonormal, as discussed earlier. For practical purposes, how-

CONTCUR FROM 10200 TO L1100 PY 50

Initzal height feld for Test Case 4 with (4} 2, = 20 m/s and {(b) u, = 40 m/s plotted on an orthographic projection centered at 45°N and the

longitude of the trough in the analytic solution. Contour interval is (a} 25 m and (b) 50 m.
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ever, the representation has already converged to machine accu-
racy using a T63 truncation.

Figure 4.7 shows the initial height field for the uy = 20 (left
panel) and u, = 40 m/s (right panel) cases. After 3 days, these
fields are indistinguishable from the initial condition. Figure
4.8 shows the structure of the corresponding height error at
day 5 for Test Case 4 using a T42 truncation. Figure 4.9 presents
the time evolution of the Lk} error norms for the two cases.
The high frequency temporal noise appearing in these ervor
measures occurs because the initial data have not been properly
imtialized; i.¢., the mass and momentum fields have been speci-
fied independently and the corresponding truncation errors re-
sult in very small imbalances contributing to gravity-wave ac-
tivity. Another important source of this noise arises from

discrete sampling of the solution on the Gaussian grid as seen .

in the earlier test cases.

The I, error in the height field (not shown) grows rapidly
during the first day of integration, after which it grows monoton-
ically, but at less than one-tenth the initial rate. A similar,
although less exaggerated behavior is seen in the /; wind error.
The growth in these error curves is predominantly atiributable
to thime truncation error, although in the early stages of the
integration it is also associated with the geostrophic adjustment
process. For example, during the period of rapid /, error growth,
the /.. error shows a rapid decrease, followed by a rebound, as
the slowly forced mass and momentum fields come ino a
consistent internal balance.

As mentioned earlier, the errors for this test case are domi-
nated by the time truncation component. In T42 integrations
for which the discrete time step has been halved (not shown),
the growth in all error estimates is reduced by nearly a factor
of 4. Integrations using a T63 truncation but the same time
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interval is 50 m.

growth where the T63 error estimates are modestly smaller

than the T42 results.
Global integrals of mass and energy as a function of time,

are shown in Fig. 5.3. Both resclutions exhibit comparable
systematic increases in mass during the course of the integra-
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FIG, 5.2,

T213 reference height solution for Test Case 5: {a) day 0; (b) day 5; (c) day 10; (d) day 15 on a cylindrical equidistant projection. The contour

tion, which is of the same order as machine rounding. Total
energy decays as a consequence of internal dissipation, with
an expectedly larger decay rate in the lower resolution result.
The unnormalized integrals of relative vorticity and divergence,
shown in Fig. 5.4, are reasonably well maintained (i.e., order
machine roundoff ), but begin to exhibit signs of a slowly ampli-
fying low frequency oscillation after about 20 days (not shown).

Test Case 6—Rossby—Haurwitz Wave

The initial condition for Test Case 6, is a wavenumber-4
Rossby—Haurwitz wave. Rossby—Haurwitz waves are an ideal
test of numerical solutions to the nonlinear nondivergent baro-
tropic vorticity equation, since they represent exact analytic
solutions. They are not closed-form selutions for the divergent
barotropic system, however, and thus they cannot be regarded
to be a rigorous test for the correct numerical solution of this

system of equations. Nevertheless, they are a frequently used
meteorological test and were included in the test case suite for
this reason. Because no analytic solution is known, we must use

a high resolution integration of the spectral model to generate a

reference solution.

The representation of the initial condition for this test case is
not a challenge to the spectral scheme. As the solution evolves,

1, height errors for Test Case 5 using T42 and T63 truncations,
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however, the impact of horizontal resolution becomes more
apparent, since the flow field does not maintain its initial struc-
ture. Figures 5.5a—d shows the height field for the T213 refer-
ence solution truncated to T106 and plotted on a T63 Gaussian
grid for the initial state, day 1, day 7, and day 14, respectively.
The time step for this integration is 180 s, which is smaller
than the default listed in Section 3 (due to very strong winds
associated with this test case), while the horizontal diffusion
coefficient K, = 8 X 10”m?*/s is the default value. As can be
seen in these maps, there is a noticeable tendency for some
sharpening of the mid-latitude troughs in the solution with a
hint of some erosion of the tropical ridges. As mentioned earlier,
the “‘errors’’ associated with the lower resolution integrations
are a consequence of horizontal and temporal truncation errors,
as well as the choice of the linear horizontal diffusion coeffi-
cient. To help quantify the role of horizontal diffusion in the
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high-resolution T213 reference solution, the diffusion term was
eliminated in a second high-resolution integration. The I;(h)
difference in the two solutions is shown in Fig. 5.6. This mea-
sure illustrates that the first five days are essentially unaffected
by the diffusion. After 14 days, this term leads to only a 0.08%
I(h)y difference in the solution and clearly plays a minor role
in the reference solution results.

Figure 5.7 shows solutions of the height field for T42 (top)
and Té3 (bottom), along with the differences from the high-
resolution reference solution at day 14. The corresponding {,
error norms are shown in Fig. 5.8. The T42 and T63 truncations
used time steps of 600 and 450 s, respectively, and diffusion
coefficients of 5 X 10%m®/s and 1 X 10%m*/s, respectively.
At each of the two resolutions, we see similar structures in
the error field with a general erosion of zonal and meridional
gradients that increases with lower resolution. In general, the
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FIG. 5.4. Global integrals of (a) vorticity and (b) divergence for Test Case 5 using T42 and T63 truncations.
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T63 errors are about half the size of the errors exhibited by
the T42 integration. In each case, the phase of the wave structure
is very well represented.

With regard to conservation properties (Figs. 5.9 and 5.10) 8.x107* ————
the T42 and T63 models do reasonably well. Both resolutions +
exhibit a comparable systematic relative increase in mass during t

- . - . —4
the course of the integration, which is of the same order as 7-x10
machine rounding. Total energy decays as a result of internal
dissipation, with a proportionally larger decay rate in the lower

T 5.x107*}
resolution result. The unnormalized integrals of relative vortic- ‘f'; ° r
ity and divergence are reasonably well maintained (i.e., order o I
machine roundoff). E 4.x1074 |-
Integration of the T42 and T63 models with a 180-s time g
step suggests that time truncation is playing some role in the S 3.x10-*
detailed structure of the error. A comparison of the height fields < t

and differences with the T213 reference solution for the T42 I
run with a 180-s time step clearly shows the sensitivity. Al- 1074
though the general characteristics of the global error estimates I
(not shown) are not affected by the time step, the details are.
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time step. The overall character of the error distribution is
noticeably different (although still quite small in amplitude)
when the two solutions are compared (see [8]).

Finally, we have selected wavenumber 4 for this test case
because it is empirically known to be a stable solution to the
equations. Thus, small perturbations introduced by truncation
error should not grow so rapidly over the 14-day integration
period so as to produce a solution dominated in any way by
such perturbations. However, since the flow structure does not
maintain itself (as it would in the nondivergent barotropic sys-
tem) and since the change in structure is a function of the
horizontal resolution, one might ask how long the initial solu-
tion should be expected to remain stable. To address this ques-
tion we have integrated the T42 version of the spectral model
incorporating diffusion and a 600-s time step for a period of
60 days. The height field at 30 and 60 days clearly maintains
its basic wavenumber-4 structure throughout the integration
period, although the details of the simulated flow pattern
change. Consequently, it is quite reasonable to assume that the
true solution is nowhere near the point of breaking down after
14 days (the integration period proposed for the test case).
Viable numerical methods should therefore be able to maintain
the basic wavenumber-4 structure for the I4-day period at
a minimum.
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Test Case 7—Analyzed Initial Conditions

The integration of three analyzed 500-mb height and wind
field initial conditions represents the remaining test case,
Test Case 7. Since these cases make use of observed data,
they must be initialized using a nonlinear normal mode
initialization procedure as discussed in Section 3 and in [8].
As in the previous two test cases, horizontal diffusion was
included for all numerical forecasts, where the implications
of dissipation on the forecasts and reference solutions have
been discussed carlier.

The I, height errors from forecasts using T42, T63, and T106
truncations are illustrated in Fig. 5.11. The short dashed curves
are from the T42 forecasts, the salid curves are from the T63
forecasts, and the longer dashed curves are from the T106
forecasts. The circle line marker denotes the 21 Dec 1978 case,
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the square line marker denotes the 9 Jan 1979 case, and the
triangle marker denotes the 16 Jan 1979 case. The relative
behavior of the error norms in the three cases varies with the
different resolutions. The [,(h} and [,(v} errors (not shown)
improve with resolution as expected. As a general rule, the
I;(h) and /;(v) errors improve with resolution. There is one
example (see [8]), where a particular T63 forecast is not as
good as a T42 forecast for a different case. For any given case,
however, the [, error norms always decrease with increasing
resolution. The [.(h) and 1.(v) errors show a much larger spread
with significant overlap among the resolutions. In the case of
this error norm, increased resolution does not always result in
a monotonic improvement in the forecast.

As discussed earlier in Section 3 (in the context of the high-
resolution reference solution), the global integrals of mass were
conserved to approximately 10 digits over the course of the
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FIG. 5.10. Global average (a) vorticity and (b) divergence for Test Case 6 using T42 and T63 truncations,



SPECTRAL TRANSFORM SOLUTIONS

6.x1073 T T T
5.x1073 | <
41073 L 1

3.x1073

normalized 1, (h)

2.x107%

120

FIG. 5.11. 1, height errors for Test Case 7 with short dash lines for T42,
salid lines for T63, and long dash lines for T106. Circle line markers denote
the 21 December 1978 case, squares for 9 January 1979, and triangles for 16
Janvary 1979,
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5-day forecasts. The global average vorticity, divergence, and
energy generally behave as in the previous two test cases, The
global average vorticity and divergence are generally better
conserved for the lower resolution models, i.e., the T42 integra-
tion is marginally better than the T63 integration and the T63
results are noticeably better than the T 106 results. Further com-
parison with the T213 reference integration shows that the
T106 integration conserves these quantities better than the T213
simulation. This degradation in the degree of conservation is
primarily attributable to the lack of discrete orthonormality in
the Legendre functions as implemented in the spectral shallow
waler code (as discussed earlier in Section 3), The normalized
global average total energy is conserved better with increased
resolution, primarily associated with the decreased diffusion,
as would be expected. Similar conservation improvements are
seen in the T213 reference integration. The degree to which
energy is conserved is case-dependent, where the relative con-
servation behavior of the three cases is basically the same at
all resolutions.

Figure 5.12 presents a north polar stereographic map of the
initialized height field for the 21 December 1978 case, For the
purpose of the following discussion we include contour maps

FIG. 5.12.
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Initial height field on a North polar stereographic projection for the 2t December 1978 case, Contour interval is 50 m.
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FIG. 5.14. Differences with reference solution of height field for day 5 of the 21 December 1978 case on a Nerth polar stereographic projection: {a) T42;
(b) T63; (¢) T106; (d) reference solution. The contour intervals are (a) 25 m, (b) 25 m, (¢) 12.5 m, and {d) 50 m.

little of interest equatorward of 30°, Note that the spatial scale
of the error fields are comparable at all resolutions, where
the local amplitude drops with improvements in horizontal
resolution. The reference solution is from a T213 integration
with diffusion coefficient K, = 8.0 X 102 m*/s and a 350-s

time step. The contour interval is 50 m for the height fields
and 25 m, 25 m, and 12.5 m for the T42, T63, and T106
errors, respectively.

Figure 5.15 shows the trace of the height field at the grid
points closest to Boulder, Colorado (40°N, 105°W) for the 21
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FIG.5.15. Height field as a function of time at grid points closest to (40°N,
105°W) for T42 (short dash), T63 (solid), and T106 (fong dash} using 21
December 1978 initial conditions.

Dec 1978 initial condition. The actual locations of the grid
points are (40.77°N, 106.0°W) for the T42 truncation, (40.1°N,
105.0°W) for the T63 truncation, and (40.93°N, 104.63°W) for
T106 truncation. The line codes for the different resolutions
are the same as used earlier, with the short dash for T42, solid
for T63, and long dash for T106. The data are plotted every
hour rather than every iteration. Since in the T42 case this is
an odd number of time steps, any significant 2Ar signal caused
by even—odd splitting in the centered time differencing would
appear in the graphs. There is no indication of such a signal.
Similarly, the other resolutions also showed no 2A¢ signal upon
examination. The figures also indicate that high frequency grav-
ity wave motion is not present in the forecasts. The three resolu-
tions do not track each other identically, even initially, because
the grid point locations are not identical. Even if they were
identical, the grid values would likely differ, simply due to
truncation differences. Nevertheless, solution similarity at the
various resolutions is unmistakable.

CONCLUDING REMARKS

The spectral transform method is commonly adopted in
Atmospheric General Circulation Modeling applications (e.g.,
numerical weather prediction and climate simulation), Since
it is so widely used, it provides a benchmark against which
alternative numerical approximations should be compared.
This paper provides a summary of numerical solutions to
the test case suite proposed by Williamson et al. [17] for
the shallow water equations in spherical geometry. The
solutions have been generated using the conventional spectral
transform technique [6] to provide a basis for comparison.

JAKOB-CHiEN, HACK, AND WILLIAMSON
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Complete details of the solution are provided in the technical
report by Jakob et al. [8].

In almost all the test cases, the spectral transform method
proves to be a highly accurate solution technique at resolutions
typically associated with atmospheric general circolation mod-
els used to simulate the earth’s climate, Two of the test cases
(2 and 3) are trivial for the spectral transform method, in part
because they involve structures consisting of the basis functions
only. Clearly, these particular cases provide no practical infor-
mation about the spectral transform method and alternative
schemes do not have to do as well to be considered viable
for practical atmospheric applications. The spectral transform
method exhibits one undesirable characteristic for climate
model application, which is the introduction of spurious wave
structures in the solution. This characteristic is seen most
clearly in Test Cases 1 and 5. Although this is not necessarily
a problem in accurately simulating fluid flow, it becomes a
serious problem in climate applications in which subgrid
scale parameterizations are strongly dependent on the pre-
dicted large-scale state. The introduction of spurious wave
structures can produce non-physical states such as negative
water vapor mixing ratio [18]. In addition, it can also result
in a strong, spurious modulation of the calculated forcing
fields such as surface heat fluxes.

APPENDIX

The spectral transform shallow water model (STSWM) used
to generate the sclutions presented in this paper is coded in
the Fortran 77 programming language [1] and is available via
anonymous FTP from the authors. A more detailed description
is available in electronic form from ftp.ucar.edu (IP address:
128.117.7.32) in the plain text file /chammp/shallow/docu/
description.txt.

Reference solutions for Test Case 5 (zonal flow over an
isolated mountain}, Test Case 6 (Rossby—Haurwitz wave) and
Test Case 7 (analyzed 500-mb height and wind field initial
conditions) were computed using the STSWM, since the solu-
tions to these test cases are not analytic. The model code was
compiled using the Cray Fortran CFT77 compiler, version
5.0.4.1 and linked and executed under the UNICOS 6.1 op-
erating system on a Cray Y-MP 8/864. Real and integer vari-
ables used a word length of 64 bits, which equals about 14
decimal digits accuracy for the mantissa of real variables. Fur-
ther detail! on how these reference solutions were obtained,
along with measures of their uncertainty, are provided in Jakob
et al. [8]. The solutions themselves are provided in the form
of spectral expansion coefficients using the portable NetCDF
data format. Fortran code to project these coefficients onto an
arbitrary grid is also included. Instructions on how to obtain
the solutions and code can be found in the plain text file
fchammp/shallow/docu/refsol.txt. The reference solutions and
codes are also available at Qak Ridge National Laboratory. A
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list of available material can be obtained by mailing *‘send
index from chammp’’ to netlib@ornl.gov, Instructions on how
to obtain the solutions and code can be obtained by mailing
“‘send REDME from chammp’* to netlib@oml.gov. Difficulties
in accessing the files at NCAR should be reported to the NCAR
computer consulting office at 303-497-1278 (email: consult]l @
ncar.ucar.edu). Difficulties in accessing files at ORNL should
be reported electronically to bbd@ornl.gov. Software bugs,
along with suggested fixes, should be reported electronically
to stswm@ncar.ucar.edu. Copies of the technical report [8],
which contains complete details of all the solutions to the
test cases summarized here, may be obtained from Hack or
Williamson at NCAR (jhack@ncar.ucar.edu; wmson@ncar.
ucar.edu).
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